60758 measured reflections

 $R_{\rm int} = 0.036$

6263 independent reflections

5929 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(4-Chlorophenyl)(3,6-dibromo-2-hydroxy-7-methoxy-1-naphthyl)methanone

Ryosuke Mitsui, Atsushi Nagasawa, Shoji Watanabe, Akiko Okamoto and Noriyuki Yonezawa*

Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan Correspondence e-mail: yonezawa@cc.tuat.ac.jp

Received 24 May 2010; accepted 16 June 2010

Key indicators: single-crystal X-ray study; T = 193 K; mean σ (C–C) = 0.004 Å; R factor = 0.031; wR factor = 0.081; data-to-parameter ratio = 14.4.

The asymmetric unit of the title compound, $C_{18}H_{11}Br_2ClO_3$, contains two crystallographically independent molecules in which the dihedral angles between the naphthalene ring systems and the benzene rings are 55.64 (11) and 60.50 (11)°. In each molecule, an intramolecular $O-H\cdots O=C$ hydrogen bond generates a six-membered ring. In the crystal structure, intermolecular $C-H\cdots O$ and $C-H\cdots Cl$ hydrogen bonds and two different $Br\cdots O$ halogen bonds [2.9850 (19) and 3.2169 (19) Å] are observed.

Related literature

For the structures of closely related compounds, see: Mitsui *et al.* (2008*a*,*b*, 2009, 2010*a*,*b*,*c*). For a review of halogen bonding, see: Politzer *et al.* (2007).

Experimental

Crystal data

 $\begin{array}{l} C_{18}H_{11}Br_2CIO_3\\ M_r=470.54\\ Monoclinic, \ C2/c\\ a=32.1178\ (6)\ {\rm \AA}\\ b=11.1814\ (2)\ {\rm \AA}\\ c=19.7078\ (4)\ {\rm \AA}\\ \beta=104.687\ (1)^\circ \end{array}$

V = 6846.2 (2) Å ³	
Z = 16	
Cu Ka radiation	
$\mu = 7.57 \text{ mm}^{-1}$	
T = 193 K	
$0.30 \times 0.30 \times 0.10$ m	m

Data collection

Rigaku R-AXIS RAPID

diffractometer Absorption correction: numerical (NUMABS; Higashi, 1999) $T_{min} = 0.135, T_{max} = 0.469$

Refinement

R w S

62

$[F^2 > 2\sigma(F^2)] = 0.031$	435 parameters
$R(F^2) = 0.081$	H-atom parameters constrained
= 1.14	$\Delta \rho_{\rm max} = 0.85 \ {\rm e} \ {\rm \AA}^{-3}$
263 reflections	$\Delta \rho_{\rm min} = -1.08 \text{ e} \text{ \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$D2 - H2O \cdots O1$	0.79	1.77	2.497 (3)	153
$D5 - H5O \cdots O4$	0.78	1.85	2.568 (3)	153
$C4 - H4 \cdots O4^{i}$	0.95	2.42	3.338 (3)	162
$C18 - H18A \cdots Cl2^{ii}$ $C34 - H34 \cdots O2^{iii}$	0.98	2.81	3.406 (3)	120
	0.95	2.49	3.397 (4)	160

Symmetry codes: (i) $x, -y + 1, z - \frac{1}{2}$; (ii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (iii) $x, -y, z + \frac{1}{2}$.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2004); program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996); software used to prepare material for publication: *SHELXL97*.

The authors would express their gratitude to Professor Keiichi Noguchi for technical advice. This work was partially supported by the Mukai Science and Technology Foundation, Tokyo, Japan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2214).

References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
- Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
- Mitsui, R., Nagasawa, A., Watanabe, S., Okamoto, A. & Yonezawa, N. (2010b). Acta Cryst. E66, 0873.
- Mitsui, R., Nakaema, K., Nagasawa, A., Noguchi, K. & Yonezawa, N. (2010a). Acta Cryst. E66, 0676.
- Mitsui, R., Nakaema, K., Noguchi, K., Okamoto, A. & Yonezawa, N. (2008a). Acta Cryst. E64, o1278.
- Mitsui, R., Nakaema, K., Noguchi, K. & Yonezawa, N. (2008b). Acta Cryst. E64, 02497.
- Mitsui, R., Noguchi, K. & Yonezawa, N. (2009). Acta Cryst. E65, 0543.
- Mitsui, R., Watanabe, S., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010c). Acta Cryst. E66, 01304.
- Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2010). E66, o1761 [doi:10.1107/S1600536810023299]

(4-Chlorophenyl)(3,6-dibromo-2-hydroxy-7-methoxy-1-naphthyl)methanone

R. Mitsui, A. Nagasawa, S. Watanabe, A. Okamoto and N. Yonezawa

Comment

Recently, we reported the crystal structures of 1-aroylated 2,7-dimethoxynaphthalenes, 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene (Mitsui *et al.*, 2008*a*), (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (Mitsui *et al.*, 2009), 1-bromo-8-(4-chlorobenzoyl)-7-hydroxy-2-methoxynaphthalene (Mitsui *et al.*, 2010*a*), (8-bromo-2,7-dimethoxy-1-naphthyl)(4-chlorophenyl)methanone (Mitsui *et al.*, 2010*b*) and (4-chlorophenyl)(3,8-dibromo-2-hydroxy-7-methoxy-1-naphthyl)methanone (Mitsui *et al.*, 2010*c*). As a part of our ongoing studies on the synthesis and crystal structure analysis of aroylated naphthalene derivatives, we prepared and analysed the structure of a single crystal of 2,7-dibromo-4-(4-chlorobenzoyl)-3-hydroxy-6-methoxynaphthalene, (I). The title compound was prepared by electrophilic aromatic bromination reaction of (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone with bromine.

An *ORTEPIII* (Burnett & Johnson, 1996) plot of (I) is shown in Fig. 1. The title compound crystallizes in the monoclinic crystal system such that there are two molecules in the asymmetric unit, molecules *A* and *B*, respectively. In *A*, the dihedral angle between the naphthalene ring (C1–C10) and the benzene ring (C12–C17) is 55.64 (11)°, and the central carbonyl C—(C=O)—C group is relatively coplanar to the naphthalene ring [9.72 (15)°]. In *B*, by contrast, the dihedral angle between the naphthalene ring (C19–C28) and the benzene ring (C30–C35) is 60.50 (11)°, and the central carbonyl C—(C=O)—C group is twisted away from the naphthalene ring [23.73 (15)°]. In each molecule, the hydroxy groups are involved in O—H…O=C hydrogen bond generates a six-membered ring (Fig. 1 and Table 1).

In the crystal structure, intermolecular C—H···O and C—H···Cl hydrogen bonding interactions contribute to the stabilization of the molecular and crystal structures (Figs. 2 and 3, Table 1). Additionally, the contact distances Br2···O1 and Br3···O6 are 2.9850 (19) and 3.2169 (19) Å, respectively (Figs. 2 and 3). These contacts are shorter than the sum of their van der Waals radii (3.37 Å), and arranged nearly linearly [C7—Br2···O1 = 172.24 (10)°, C21—Br3···O6 = 142.02 (9)°], suggesting that there is a possibility for halogen bonding, which further contributes to crystal packing stability (Politzer *et al.*, 2007).

Experimental

To a solution of (4-chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone (313 mg, 1.00 mmol) in chloroform (5 ml) was added Br₂ (646 mg, 4.04 mmol) drop-wise at 0 °C. The reaction mixture was stirred for 12 h at 0 °C, then poured into aqueous 2 M Na₂S₂O₃ (10 ml), and the aqueous layer was extracted with CHCl₃ (3 × 10 ml). The combined organic layers were washed with 2 M Na₂S₂O₃ (3 × 30 ml) and brine (3 × 30 ml), and dried over MgSO₄ overnight. The solvent was removed *in vacuo* and the crude material was purified by column chromatography (silica gel, CHCl₃) to give the title compound (yield 409 mg, 87%). Single crystals suitable for X-ray diffraction analysis were obtained from CHCl₃ as yellow blocks (m.p. 431.5–432.0 K).

Spectroscopic Data: ¹H NMR (300 MHz, CDCl₃) δ 10.10 (s, 1H), 8.04 (s, 1H), 7.88 (s, 1H), 7.63 (d, 2H), 7.43 (d, 2H), 6.62 (s, 1H), 3.49 (s, 3H); ¹³C NMR (75 MHz, DMSO-d₆) δ 194.2, 154.0, 149.2, 138.4, 135.9, 132.3, 131.3, 130.6, 130.5, 128.6, 124.7, 121.0, 111.6, 110.8, 102.8, 55.7; IR (KBr): 1662, 1607, 1591, 1486, 1240, 1211, 1093, 843; HRMS (*m/z*): [*M* + H]⁺ calcd for C₁₈H₁₂Br₂ClO₃, 468.8842 found, 468.8839. Anal. Calcd for C₁₈H₁₁Br₂ClO₃: C 45.95, H 2.36. Found: C 46.10, H 2.32.

Refinement

All the H atoms could be located in difference Fourier maps. All the H atoms were subsequently refined as riding atoms, with O2—H2O = 0.792, O5—H5O = 0.783, C—H = 0.950 (aromatic) and 0.980 (methyl) Å, and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The asymmetric unit of compound (I), showing 50% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line.

Fig. 2. Partial crystal packing diagram of compound (I), viewed down the *c* axis. Intermolecular C—H···O hydrogen bonds and Br···O halogen bonds are shown as dashed lines.

Fig. 3. Partial crystal packing diagram of compound (I), viewed down the *a* axis. Intermolecular C—H···O, C—H···Cl hydrogen bonds and Br···O halogen bonds are shown as dashed lines.

(4-Chlorophenyl)(3,6-dibromo-2-hydroxy-7-methoxy-1-naphthyl)methanone

Crystal data

 $C_{18}H_{11}Br_2ClO_3$ $M_r = 470.54$ Monoclinic, C2/cHall symbol: -C 2yc a = 32.1178 (6) Å b = 11.1814 (2) Å c = 19.7078 (4) Å F(000) = 3680 $D_x = 1.826 \text{ Mg m}^{-3}$ Melting point = 431.5–432.0 K Cu Ka radiation, $\lambda = 1.54187 \text{ Å}$ Cell parameters from 39111 reflections $\theta = 3.2-68.2^{\circ}$ $\mu = 7.57 \text{ mm}^{-1}$

$\beta = 104.687 (1)^{\circ}$	<i>T</i> = 193 K
$V = 6846.2 (2) \text{ Å}^3$	Block, yellow
<i>Z</i> = 16	$0.30 \times 0.30 \times 0.10 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID diffractometer	6263 independent reflections
Radiation source: rotating anode	5929 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.036$
Detector resolution: 10.00 pixels mm ⁻¹	$\theta_{\text{max}} = 68.2^{\circ}, \ \theta_{\text{min}} = 4.2^{\circ}$
ω scans	$h = -38 \rightarrow 38$
Absorption correction: numerical (<i>NUMABS</i> ; Higashi, 1999)	$k = -13 \rightarrow 13$
$T_{\min} = 0.135, T_{\max} = 0.469$	$l = -23 \rightarrow 23$
60758 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.081$	H-atom parameters constrained
<i>S</i> = 1.14	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0417P)^{2} + 12.8149P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
6263 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
435 parameters	$\Delta \rho_{max} = 0.85 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -1.08 \ e \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.072488 (11)	0.38461 (3)	-0.022815 (15)	0.04538 (10)
Br2	0.173873 (12)	0.97541 (3)	0.193709 (18)	0.04571 (10)
Br3	0.038818 (9)	0.53557 (2)	0.168208 (16)	0.03360 (9)

Br4	0.023492 (11)	-0.17162 (3)	0.074334 (14)	0.03793 (9)
Cl1	0.21994 (3)	0.46769 (8)	0.54028 (4)	0.0503 (2)
Cl2	0.19143 (3)	-0.20130 (9)	0.48243 (5)	0.0581 (2)
01	0.17220 (7)	0.23655 (17)	0.22437 (11)	0.0403 (5)
O2	0.12506 (6)	0.26173 (17)	0.10327 (10)	0.0357 (4)
H2O	0.1405	0.2323	0.1369	0.043*
O3	0.22492 (6)	0.79766 (17)	0.28983 (10)	0.0356 (4)
O4	0.06859 (7)	0.28669 (18)	0.41182 (10)	0.0393 (5)
O5	0.05702 (6)	0.44299 (16)	0.31336 (10)	0.0303 (4)
H5O	0.0593	0.4145	0.3504	0.036*
O6	0.04818 (7)	-0.19587 (17)	0.22873 (10)	0.0372 (5)
C1	0.15660 (8)	0.4293 (2)	0.17549 (13)	0.0258 (5)
C2	0.13115 (8)	0.3794 (2)	0.11283 (14)	0.0288 (6)
C3	0.10935 (8)	0.4552 (3)	0.05777 (13)	0.0309 (6)
C4	0.11292 (8)	0.5753 (3)	0.06312 (14)	0.0320 (6)
H4	0.0970	0.6244	0.0262	0.038*
C5	0.14024 (8)	0.6289 (2)	0.12333 (13)	0.0277 (5)
C6	0.14426 (9)	0.7552 (3)	0.12782 (14)	0.0322 (6)
H6	0.1279	0.8037	0.0910	0.039*
C7	0.17117 (9)	0.8070 (2)	0.18417 (15)	0.0308 (6)
C8	0.19743 (8)	0.7369 (2)	0.23794 (14)	0.0285 (5)
C9	0.19403 (8)	0.6138 (2)	0.23409 (13)	0.0268 (5)
Н9	0.2125	0.5664	0.2692	0.032*
C10	0.16371 (8)	0.5568 (2)	0.17917 (13)	0.0251 (5)
C11	0.17185 (8)	0.3462 (2)	0.23443 (14)	0.0292 (6)
C12	0.18475 (8)	0.3844 (2)	0.30934 (13)	0.0265 (5)
C13	0.22110 (9)	0.3333 (3)	0.35338 (15)	0.0345 (6)
H13	0.2381	0.2788	0.3348	0.041*
C14	0.23289 (9)	0.3612 (3)	0.42463 (15)	0.0384 (7)
H14	0.2585	0.3295	0.4545	0.046*
C15	0.20650 (9)	0.4361 (3)	0.45078 (14)	0.0328 (6)
C16	0.16946 (9)	0.4855 (3)	0.40839 (15)	0.0328 (6)
H16	0.1514	0.5353	0.4278	0.039*
C17	0.15917 (8)	0.4610 (2)	0.33720 (14)	0.0288 (5)
H17	0.1345	0.4967	0.3071	0.035*
C18	0.24891 (9)	0.7304 (3)	0.34889 (15)	0.0358 (6)
H18A	0.2668	0.7849	0.3832	0.043*
H18B	0.2674	0.6724	0.3332	0.043*
H18C	0.2290	0.6879	0.3707	0.043*
C19	0.06148 (7)	0.2314 (2)	0.29361 (13)	0.0245 (5)
C20	0.05402 (7)	0.3492 (2)	0.27021 (13)	0.0251 (5)
C21	0.04405 (8)	0.3740 (2)	0.19710 (14)	0.0261 (5)
C22	0.03838 (8)	0.2840 (2)	0.14929 (13)	0.0271 (5)
H22	0.0319	0.3025	0.1007	0.033*
C23	0.04202 (8)	0.1626 (2)	0.17117 (13)	0.0256 (5)
C24	0.03339 (8)	0.0696 (2)	0.12090 (13)	0.0273 (5)
H24	0.0256	0.0885	0.0723	0.033*
C25	0.03620 (8)	-0.0467 (2)	0.14174 (13)	0.0275 (5)
C26	0.04715 (8)	-0.0773 (2)	0.21398 (13)	0.0264 (5)

C27	0.05499 (8)	0.0121 (2)	0.26305 (13)	0.0259 (5)
H27	0.0614	-0.0085	0.3114	0.031*
C28	0.05375 (7)	0.1344 (2)	0.24380 (13)	0.0231 (5)
C29	0.07782 (8)	0.2141 (2)	0.37033 (13)	0.0276 (5)
C30	0.10722 (8)	0.1132 (2)	0.39876 (13)	0.0273 (5)
C31	0.14023 (8)	0.0807 (3)	0.36814 (13)	0.0296 (6)
H31	0.1446	0.1245	0.3292	0.035*
C32	0.16668 (9)	-0.0151 (3)	0.39424 (15)	0.0346 (6)
H32	0.1893	-0.0377	0.3738	0.042*
C33	0.15938 (9)	-0.0772 (3)	0.45092 (15)	0.0367 (6)
C34	0.12720 (10)	-0.0470 (3)	0.48230 (15)	0.0391 (7)
H34	0.1228	-0.0917	0.5209	0.047*
C35	0.10132 (10)	0.0504 (3)	0.45627 (14)	0.0345 (6)
H35	0.0794	0.0743	0.4780	0.041*
C36	0.06237 (12)	-0.2311 (3)	0.30100 (15)	0.0438 (8)
H36A	0.0619	-0.3185	0.3043	0.053*
H36B	0.0431	-0.1969	0.3273	0.053*
H36C	0.0917	-0.2020	0.3207	0.053*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.05153 (19)	0.0532 (2)	0.02754 (16)	-0.02078 (15)	0.00293 (13)	-0.00796 (13)
Br2	0.0600 (2)	0.01933 (17)	0.0526 (2)	-0.00021 (13)	0.00479 (16)	0.00278 (13)
Br3	0.04039 (16)	0.02086 (15)	0.04206 (17)	0.00226 (11)	0.01511 (13)	0.00746 (11)
Br4	0.05632 (19)	0.02872 (17)	0.02572 (15)	-0.00679 (13)	0.00481 (13)	-0.00455 (11)
Cl1	0.0497 (4)	0.0711 (6)	0.0289 (3)	-0.0060 (4)	0.0077 (3)	-0.0068 (3)
C12	0.0671 (5)	0.0552 (5)	0.0506 (5)	0.0325 (4)	0.0123 (4)	0.0199 (4)
01	0.0628 (13)	0.0182 (10)	0.0390 (11)	0.0006 (9)	0.0116 (10)	-0.0024 (8)
O2	0.0475 (11)	0.0254 (10)	0.0342 (10)	-0.0079 (8)	0.0105 (9)	-0.0082 (8)
O3	0.0414 (11)	0.0228 (10)	0.0359 (10)	-0.0052 (8)	-0.0023 (8)	-0.0017 (8)
O4	0.0536 (12)	0.0319 (11)	0.0301 (10)	0.0092 (9)	0.0064 (9)	-0.0065 (8)
O5	0.0364 (10)	0.0221 (9)	0.0325 (9)	0.0025 (8)	0.0087 (8)	-0.0022 (7)
O6	0.0603 (13)	0.0202 (10)	0.0264 (10)	-0.0037 (9)	0.0025 (9)	0.0017 (7)
C1	0.0290 (12)	0.0217 (13)	0.0282 (13)	-0.0018 (10)	0.0103 (10)	-0.0019 (10)
C2	0.0323 (13)	0.0268 (14)	0.0307 (13)	-0.0056 (11)	0.0140 (11)	-0.0069 (11)
C3	0.0315 (13)	0.0377 (16)	0.0233 (12)	-0.0089 (11)	0.0062 (10)	-0.0056 (11)
C4	0.0316 (13)	0.0373 (16)	0.0258 (13)	-0.0028 (12)	0.0050 (11)	0.0014 (11)
C5	0.0297 (12)	0.0272 (14)	0.0263 (12)	-0.0013 (10)	0.0072 (10)	-0.0003 (10)
C6	0.0358 (14)	0.0268 (14)	0.0319 (14)	0.0016 (11)	0.0049 (11)	0.0058 (11)
C7	0.0375 (14)	0.0164 (13)	0.0382 (15)	-0.0007 (10)	0.0088 (12)	0.0012 (11)
C8	0.0302 (13)	0.0231 (13)	0.0307 (13)	-0.0021 (10)	0.0052 (10)	-0.0014 (10)
C9	0.0291 (12)	0.0227 (13)	0.0280 (13)	-0.0007 (10)	0.0063 (10)	0.0009 (10)
C10	0.0276 (12)	0.0227 (13)	0.0266 (12)	-0.0011 (10)	0.0100 (10)	-0.0009 (10)
C11	0.0320 (13)	0.0219 (14)	0.0353 (14)	-0.0027 (10)	0.0113 (11)	-0.0012 (11)
C12	0.0322 (13)	0.0197 (13)	0.0291 (13)	-0.0025 (10)	0.0103 (10)	0.0028 (10)
C13	0.0402 (15)	0.0302 (15)	0.0356 (15)	0.0088 (12)	0.0142 (12)	0.0044 (12)
C14	0.0360 (14)	0.0437 (18)	0.0345 (15)	0.0067 (13)	0.0074 (12)	0.0077 (13)

C15	0.0367 (14)	0.0371 (16)	0.0253 (13)	-0.0060 (12)	0.0095 (11)	-0.0009 (11)
C16	0.0331 (14)	0.0329 (15)	0.0354 (14)	0.0000 (11)	0.0140 (12)	-0.0044 (12)
C17	0.0268 (12)	0.0265 (14)	0.0333 (14)	0.0008 (10)	0.0080 (10)	0.0016 (11)
C18	0.0401 (15)	0.0295 (15)	0.0329 (14)	-0.0026 (12)	0.0003 (12)	-0.0015 (12)
C19	0.0213 (11)	0.0252 (13)	0.0265 (12)	0.0018 (9)	0.0050 (9)	0.0007 (10)
C20	0.0213 (11)	0.0226 (13)	0.0316 (13)	-0.0006 (9)	0.0069 (10)	-0.0015 (10)
C21	0.0256 (12)	0.0186 (12)	0.0347 (14)	0.0019 (9)	0.0086 (10)	0.0051 (10)
C22	0.0283 (12)	0.0271 (14)	0.0265 (12)	0.0012 (10)	0.0078 (10)	0.0051 (10)
C23	0.0251 (12)	0.0242 (13)	0.0267 (13)	-0.0001 (10)	0.0051 (10)	0.0025 (10)
C24	0.0323 (13)	0.0281 (14)	0.0203 (12)	-0.0018 (11)	0.0044 (10)	0.0007 (10)
C25	0.0331 (13)	0.0252 (14)	0.0224 (12)	-0.0043 (10)	0.0036 (10)	-0.0045 (10)
C26	0.0314 (12)	0.0211 (13)	0.0250 (12)	-0.0014 (10)	0.0037 (10)	0.0012 (10)
C27	0.0293 (12)	0.0241 (13)	0.0223 (12)	0.0000 (10)	0.0030 (10)	0.0024 (10)
C28	0.0221 (11)	0.0222 (13)	0.0244 (12)	0.0007 (9)	0.0047 (9)	-0.0003 (10)
C29	0.0310 (13)	0.0237 (13)	0.0266 (13)	-0.0019 (10)	0.0046 (10)	-0.0027 (10)
C30	0.0316 (13)	0.0261 (14)	0.0206 (12)	0.0000 (10)	-0.0002 (10)	-0.0031 (10)
C31	0.0278 (12)	0.0351 (15)	0.0242 (12)	-0.0025 (11)	0.0034 (10)	0.0039 (11)
C32	0.0283 (13)	0.0399 (16)	0.0334 (14)	0.0045 (12)	0.0037 (11)	0.0016 (12)
C33	0.0413 (15)	0.0332 (16)	0.0301 (14)	0.0108 (12)	-0.0008 (12)	0.0053 (12)
C34	0.0527 (17)	0.0389 (17)	0.0254 (13)	0.0080 (14)	0.0094 (12)	0.0071 (12)
C35	0.0442 (15)	0.0342 (16)	0.0259 (13)	0.0070 (13)	0.0108 (12)	0.0016 (11)
C36	0.071 (2)	0.0263 (15)	0.0273 (14)	0.0007 (14)	-0.0002 (14)	0.0052 (11)

Geometric parameters (Å, °)

		A	
Br1—C3	1.896 (3)	C14—H14	0.9500
Br2—C7	1.892 (3)	C15—C16	1.384 (4)
Br3—C21	1.889 (2)	C16—C17	1.385 (4)
Br4—C25	1.899 (3)	С16—Н16	0.9500
Cl1—C15	1.743 (3)	С17—Н17	0.9500
Cl2—C33	1.745 (3)	C18—H18A	0.9800
O1—C11	1.243 (3)	C18—H18B	0.9800
O2—C2	1.336 (3)	C18—H18C	0.9800
O2—H2O	0.7916	C19—C20	1.396 (4)
O3—C8	1.353 (3)	C19—C28	1.441 (3)
O3—C18	1.435 (3)	C19—C29	1.482 (3)
O4—C29	1.240 (3)	C20—C21	1.422 (4)
O5—C20	1.338 (3)	C21—C22	1.359 (4)
O5—H5O	0.7825	C22—C23	1.419 (4)
O6—C26	1.356 (3)	C22—H22	0.9500
O6—C36	1.436 (3)	C23—C24	1.414 (4)
C1—C2	1.412 (4)	C23—C28	1.420 (3)
C1—C10	1.442 (4)	C24—C25	1.360 (4)
C1—C11	1.471 (4)	C24—H24	0.9500
C2—C3	1.415 (4)	C25—C26	1.419 (3)
C3—C4	1.350 (4)	C26—C27	1.369 (4)
C4—C5	1.417 (4)	C27—C28	1.417 (4)
C4—H4	0.9500	С27—Н27	0.9500
C5—C10	1.417 (4)	C29—C30	1.487 (4)

C5-C6	1 419 (4)	C_{30} C_{35}	1 386 (4)
C6—C7	1 353 (4)	C_{30} $-C_{31}$	1.380 (4)
С6—Н6	0.9500	$C_{31} - C_{32}$	1 383 (4)
C7-C8	1 413 (4)	C31—H31	0.9500
C8—C9	1 381 (4)	C_{32} $-C_{33}$	1 385 (4)
C9-C10	1 411 (4)	C32—H32	0.9500
С9—Н9	0.9500	C33—C34	1 374 (4)
C_{11} $-C_{12}$	1 491 (4)	$C_{34} - C_{35}$	1 387 (4)
C12-C13	1 389 (4)	C34—H34	0.9500
C12—C17	1 392 (4)	C35—H35	0.9500
C13—C14	1 394 (4)	C36—H36A	0.9800
C13—H13	0.9500	C36—H36B	0.9800
C14—C15	1 381 (4)	C36—H36C	0.9800
C2H2Q	104.6	H_{18}^{-}	109.5
$C_{2}^{0} = 0_{2}^{0} = 1120$	117.6 (2)	H18A C18 H18C	109.5
$C_{0} = C_{10}$	117.0 (2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.3
$C_{20} = 05 = 05$	104.4	$C_{20} = C_{19} = C_{28}$	119.9(2)
$C_{20} = 00 = C_{30}$	117.7(2) 118.0(2)	$C_{20} = C_{19} = C_{29}$	110.5(2)
$C_2 = C_1 = C_{10}$	116.9(2)	$C_{20} - C_{19} - C_{29}$	123.3(2) 123.4(2)
$C_2 = C_1 = C_{11}$	110.4(2)	05 620 621	123.4(2)
C10-C1-C1	124.0(2)	$C_{10} = C_{20} = C_{21}$	110.9(2)
02 - 02 - 01	125.0(3)	C19 - C20 - C21	119.0(2)
02 - 02 - 03	117.1(2)	$C_{22} = C_{21} = C_{20}$	121.0(2)
$C_1 = C_2 = C_3$	119.9(2) 121.4(2)	$C_{22} = C_{21} = B_{13}$	120.9(2)
C4 - C3 - C2	121.4(2) 120.2(2)	$C_{20} - C_{21} - B_{13}$	110.10(19) 120.7(2)
$C_4 = C_5 = B_{11}$	120.2(2)	$C_{21} = C_{22} = C_{23}$	120.7 (2)
$C_2 = C_3 = B_{11}$	110.4(2) 120.6(2)	$C_{21} - C_{22} - H_{22}$	119.0
C_{3} C_{4} U_{4}	120.0 (5)	$C_{23} - C_{22} - H_{22}$	119.0
$C_5 = C_4 = H_4$	119.7	$C_{24} = C_{23} = C_{22}$	120.2(2)
C_{3} C_{4} C_{5} C_{10}	119.7	$C_{24} = C_{23} = C_{28}$	119.8(2)
$C_{4} = C_{5} = C_{10}$	120.3(2) 120.0(2)	$C_{22} - C_{23} - C_{28}$	119.9(2) 120.4(2)
$C_{4} = C_{5} = C_{6}$	120.0(3) 110.7(2)	$C_{23} = C_{24} = C_{23}$	120.4 (2)
$C_{10} - C_{5} - C_{6}$	119.7(2) 120.4(2)	$C_{23} = C_{24} = H_{24}$	119.0
C7C6U6	120.4 (3)	$C_{23} - C_{24} - H_{24}$	119.0
$C_{1} = C_{0} = H_{0}$	119.0	$C_{24} = C_{25} = C_{20}$	120.9(2)
C_{5}	119.0	$C_{24} = C_{25} = B_{14}$	120.40(19)
$C_{0} = C_{1} = C_{8}$	120.9(2) 120.8(2)	$C_{20} = C_{23} = B_{14}$	118.02(19)
$C_{0} = C_{1} = B_{12}$	120.8(2) 118.3(2)	$06 - C_{20} - C_{27}$	124.9(2) 115.0(2)
$C_{0} = C_{1} = B_{12}$	110.3(2) 124.7(2)	00-020-025	113.9(2)
03 - 03 - 03 - 03	124.7(2)	$C_2 = C_2 $	119.1(2)
$C_{0} = C_{0} = C_{1}^{2}$	110.0(2) 110.2(2)	$C_{20} = C_{27} = C_{28}$	121.9 (2)
$C_{2} = C_{3} = C_{1}$	119.2(2) 1214(2)	$C_{20} = C_{27} = H_{27}$	119.1
C_{8} C_{9} H_{9}	121.4 (2)	$C_{26} - C_{27} - C_{28} - C_{23}$	117.1 117.8(2)
$C_{10} C_{10} H_{10}$	119.5	$C_{27} = C_{28} = C_{23}$	117.8(2) 123.7(2)
$C_{10} - C_{10} - C_{5}$	117.8 (2)	$C_2 = C_2 = C_1 = C_1 = C_2 = C_1 = C_2 = C_2 = C_1 = C_2 = C_2 = C_1 = C_2 = C_2 = C_2 = C_1 = C_2 $	123.7(2) 118 $I(2)$
$C_{2} = C_{10} = C_{2}$	117.0(2) 123.7(2)	04 - 020 - 019	110.+(2)
$C_{5} = C_{10} = C_{10}$	123.7(2) 118 5 (2)	$04 - C^{29} - C^{30}$	120.7(2)
01-011-01	120.8(2)	$C_{10} - C_{20} - C_{30}$	120.7(2)
01 - 01 - 01	120.0(2)	$C_{1} = C_{2} = C_{3} = C_{3$	120.7(2)
01-011-012	113.4 (2)	C3J-C3U-C31	117.7 (2)

C1—C11—C12	123.7 (2)	C35—C30—C29	119.1 (2)
C13—C12—C17	119.5 (2)	C31—C30—C29	121.0 (2)
C13—C12—C11	118.7 (2)	C32—C31—C30	120.2 (3)
C17—C12—C11	121.5 (2)	C32—C31—H31	119.9
C12-C13-C14	120.5 (3)	С30—С31—Н31	119.9
С12—С13—Н13	119.7	C31—C32—C33	118.3 (3)
C14—C13—H13	119.7	С31—С32—Н32	120.8
C15—C14—C13	118.4 (3)	С33—С32—Н32	120.8
C15-C14-H14	120.8	C34—C33—C32	122.7 (3)
C13-C14-H14	120.8	C34—C33—Cl2	118.6 (2)
C14—C15—C16	122.1 (3)	C32—C33—Cl2	118.7 (2)
C14—C15—Cl1	118.9 (2)	C33—C34—C35	118.4 (3)
C16—C15—Cl1	119.0 (2)	С33—С34—Н34	120.8
C15—C16—C17	118.7 (3)	С35—С34—Н34	120.8
C15—C16—H16	120.6	C30—C35—C34	120.4 (3)
С17—С16—Н16	120.6	С30—С35—Н35	119.8
C16—C17—C12	120.6 (2)	С34—С35—Н35	119.8
С16—С17—Н17	119.7	O6—C36—H36A	109.5
С12—С17—Н17	119.7	O6—C36—H36B	109.5
O3—C18—H18A	109.5	H36A—C36—H36B	109.5
O3—C18—H18B	109.5	O6—C36—H36C	109.5
H18A—C18—H18B	109.5	H36A—C36—H36C	109.5
O3—C18—H18C	109.5	H36B—C36—H36C	109.5
$C_{10} - C_{1} - C_{2} - O_{2}^{2}$	175.8 (2)	$C_{28} - C_{19} - C_{20} - C_{5}$	174 3 (2)
$C_{10} - C_{1} - C_{2} - C_{2}$	-7.9(4)	$C_{23} = C_{13} = C_{20} = C_{3}$	-64(3)
$C_{11} = C_{1} = C_{2} = C_{2}$	-7.9(4)	$C_{29} = C_{19} = C_{20} = C_{31}$	-0.4(3)
$C_{10} - C_{1} - C_{2} - C_{3}$	-0.0(4)	$C_{28} = C_{19} = C_{20} = C_{21}$	-7.9(3)
$C_1 - C_1 - C_2 - C_3$	109.0(2) 179.8(2)	$C_{29} - C_{19} - C_{20} - C_{21}$	-176.0(2)
62 - 62 - 63 - 64	1/0.0(2)	$C_{10} = C_{20} = C_{21} = C_{22}$	-170.9(2)
$C_1 = C_2 = C_3 = C_4$	1.2 (4)	C19 - C20 - C21 - C22	3.1(4)
02 - 02 - 03 - 011	1.8 (5)	$C_{10} = C_{20} = C_{21} = B_{15}$	3.0(3)
C1 = C2 = C3 = BF1	-1/5.81(19)	C19 - C20 - C21 - BF3	-1/4.94 (18)
$C_2 = C_3 = C_4 = C_5$	2.7 (4)	$C_{20} = C_{21} = C_{22} = C_{23}$	0.4 (4)
Br1C3C4C5	1/9.7 (2)	Br3-C21-C22-C23	-1/9.53 (19)
$C_3 - C_4 - C_5 - C_{10}$	-0.9(4)	$C_{21} - C_{22} - C_{23} - C_{24}$	1/6.0 (2)
$C_3 - C_4 - C_5 - C_6$	1/9.0 (3)	$C_{21} - C_{22} - C_{23} - C_{28}$	-3.1 (4)
C4—C5—C6—C7	-178.1(3)	C22—C23—C24—C25	-179.0(2)
C10-C5-C6-C7	1.7 (4)	C28—C23—C24—C25	0.1 (4)
C5—C6—C7—C8	3.2 (4)	C23—C24—C25—C26	1.0 (4)
C5—C6—C7—Br2	-175.7 (2)	C23—C24—C25—Br4	178.73 (19)
C18—O3—C8—C9	-7.1 (4)	C36—O6—C26—C27	-6.0 (4)
C18—O3—C8—C7	173.8 (2)	C36—O6—C26—C25	175.3 (3)
C6—C7—C8—O3	176.3 (3)	C24—C25—C26—O6	178.7 (2)
Br2—C7—C8—O3	-4.7 (3)	Br4—C25—C26—O6	0.9 (3)
C6—C7—C8—C9	-2.9 (4)	C24—C25—C26—C27	-0.1 (4)
Br2—C7—C8—C9	176.1 (2)	Br4—C25—C26—C27	-177.86 (19)
O3—C8—C9—C10	178.3 (2)	O6—C26—C27—C28	179.4 (2)
C7—C8—C9—C10	-2.6 (4)	C25—C26—C27—C28	-1.9 (4)
C8—C9—C10—C5	7.3 (4)	C26—C27—C28—C23	2.9 (4)
C8—C9—C10—C1	-175.2 (2)	C26—C27—C28—C19	179.5 (2)

C4—C5—C10—C9	173.0 (2)	C24—C23—C28—C27	-2.0 (3)
C6—C5—C10—C9	-6.9 (4)	C22—C23—C28—C27	177.1 (2)
C4—C5—C10—C1	-4.6 (4)	C24—C23—C28—C19	-178.8 (2)
C6—C5—C10—C1	175.5 (2)	C22-C23-C28-C19	0.3 (3)
C2-C1-C10-C9	-169.1 (2)	C20-C19-C28-C27	-171.4 (2)
C11—C1—C10—C9	14.9 (4)	C29—C19—C28—C27	9.4 (4)
C2-C1-C10-C5	8.4 (4)	C20-C19-C28-C23	5.2 (3)
C11—C1—C10—C5	-167.6 (2)	C29—C19—C28—C23	-174.0 (2)
C2-C1-C11-O1	18.4 (4)	C20-C19-C29-O4	29.0 (4)
C10-C1-C11-O1	-165.5 (3)	C28—C19—C29—O4	-151.7 (3)
C2-C1-C11-C12	-157.1 (2)	C20-C19-C29-C30	-147.9 (2)
C10-C1-C11-C12	19.0 (4)	C28—C19—C29—C30	31.3 (4)
O1-C11-C12-C13	45.9 (4)	O4—C29—C30—C35	44.2 (4)
C1-C11-C12-C13	-138.4 (3)	C19—C29—C30—C35	-138.8 (3)
O1—C11—C12—C17	-128.2 (3)	O4—C29—C30—C31	-136.2 (3)
C1-C11-C12-C17	47.5 (4)	C19—C29—C30—C31	40.8 (4)
C17—C12—C13—C14	-2.2 (4)	C35—C30—C31—C32	1.0 (4)
C11—C12—C13—C14	-176.3 (3)	C29—C30—C31—C32	-178.5 (2)
C12-C13-C14-C15	3.1 (4)	C30-C31-C32-C33	0.2 (4)
C13-C14-C15-C16	-1.2 (5)	C31—C32—C33—C34	-0.4 (5)
C13-C14-C15-Cl1	177.9 (2)	C31—C32—C33—Cl2	177.9 (2)
C14—C15—C16—C17	-1.5 (4)	C32—C33—C34—C35	-0.6 (5)
Cl1—C15—C16—C17	179.4 (2)	Cl2—C33—C34—C35	-178.9 (2)
C15-C16-C17-C12	2.5 (4)	C31—C30—C35—C34	-2.0 (4)
C13—C12—C17—C16	-0.7 (4)	C29—C30—C35—C34	177.6 (3)
C11—C12—C17—C16	173.3 (2)	C33—C34—C35—C30	1.8 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A			
O2—H2O…O1	0.79	1.77	2.497 (3)	153			
O5—H5O…O4	0.78	1.85	2.568 (3)	153			
C4—H4···O4 ⁱ	0.95	2.42	3.338 (3)	162			
C18—H18A···Cl2 ⁱⁱ	0.98	2.81	3.406 (3)	120			
C34—H34…O2 ⁱⁱⁱ	0.95	2.49	3.397 (4)	160			
Symmetry codes: (i) $x, -y+1, z-1/2$; (ii) $-x+1/2, -y+1/2, -z+1$; (iii) $x, -y, z+1/2$.							

Fig. 3

